The Newtonian Mechanics

By

Dr. Mohammed F. Al-Mudhaffer
Department of Physics-College of Education for Pure Science
2020-2021

Outlines:

- 2.1 Introduction
- 2.2 Newton's Law
- 2.3 Frames of References
- 2.4 Equation of Motion

2.1 Introduction

Distance and Time ceoncept

Velocity and Acceleration of Particle

To discribe the **MOTION of BODIES**

Time

jу changing in velocity *Acceleration* = changing in time

ix

Particle

kz

Time and distance

Mass

changing in distance *Velocity* = changing in time

mass *X* distance Momentum unit of time

mass X distance Energy unit of time

2.2 Newton's Law

1- A body remains at rest or in uniform motion unless acted upon by force. It is known as <u>Inertia</u>.

F = ma = ΔP 2- A body acted upon by a force movies in such a manner that the time rate of change of momentum equals the force. (F= ΔP) = $\frac{d}{dt}$ (mghz) the acceleration

3- If two bo are equal in

her, these forces in direction.(F1=-F2)

2.2 Newton's Law

$$F_1 = -F_2$$
 From third law of Newton.

$$\frac{dP_1}{dt} = -\frac{dP_2}{dt}$$
 from 2nd law of N.

$$m_1 \frac{dv_1}{dt} = -m_2 \frac{dv_2}{dt}$$

$$m_1 a_1 = -m_2 a_2$$
 as $a = \frac{dv}{dt}$

But $m{m}$ is positive quantity , so this mean the acceleration vectors are oppositely directed

2.2 Newton's Law

2.3 Frames of References

https://youtu.be/3yaZ7lkQPUQ

2.4 Equation of Motion

Newton's equation $F = \frac{dp}{dt}$ can be expressed alternatively as :

$$F = \frac{d(mv)}{dt} = m\frac{dv}{dt} = m\ddot{r}$$

$$F(r, v, t) \quad mass \ of \ a \ Partcle \quad Velocity \ of \ a \ Partcle$$

Problem of Block Sliding

Let us first consider the problem of a block sliding on an inclined plane. Let the angle of the inclined plane be θ and the mass of the block be 100 g. The sketch of the problem is shown in Figure 2-2a.

Example1:

If a block slides without friction down a fixed , inclined plane with $\theta=30^\circ$, what is the block's acceleration ? Find the velocity of the block after it moves from rest to a distance x_0 down the plane?

Solution:

From the figure, there are two forces acting on the block

- 1- The gravitational force F_g.
- 2- The plane's normal force N pushing the block upward on the block.

So the total force is constant:

$$F_{net} = Fg + N$$

$$m\ddot{r} = Fg + N$$
 as, $Fnet = m\ddot{r}$

This vector must be applied in two direction in x and y.

$$y - dirction -Fg cos\theta + N = 0$$
(1)

$$x - dirction$$
 $Fg \sin\theta = m\ddot{x}$ (2)

$$\ddot{x} = \frac{F_g}{m} sin\theta = g sin\theta \quad as, Fg = mg$$

Example1:

By multiply last equation $2\dot{x}$

$$2\dot{x}\ddot{x} = 2\dot{x} g \sin\theta$$

$$\frac{d}{dt}\dot{x}^2 = 2 g \sin\theta \frac{dx}{dt}$$

$$|\dot{x}^2|_0^{v_\circ} = 2 g \sin\theta |x|_0^{x_\circ}$$

$$v_{\circ}^2 = 2 g \sin\theta x_{\circ}$$

$$\mathbf{v}_{\circ} = \sqrt{2 g \sin \theta \mathbf{x}_{\circ}}$$

Example 2:

Consider that the coefficient of static fraction between the block and plane in Example 1 is μ_s =0.4 , at which angle θ will the block start sliding if it is initially at reset.

Solution:

The static fractional force has the approximate Max. value

$$f_{max} = \mu_s N$$
 $F_{net} = Fg + N + f$ $m\ddot{r} = Fg + N + f$ as , $Fnet = m\ddot{r}$

This vector must be applied in two direction in x and y.

$$x - dirction$$
 $m\ddot{x} = F_g sin\theta - f \dots (3)$
 $y - dirction$ $0 = -F_g cos \theta + N \dots (4)$

As the angle increase, the static frictional force will be unable to keep the block at rest.

Example 2:

As the angle increase, the static frictional force will be unable to keep the block at rest.

$$f_s = fmax = \mu_s N$$
(5)

By substituting eq (5) in (2) and eq(4)

$$m\ddot{x} = F_g \sin\theta - \mu_s F_g \cos\theta \dots \dots (6)$$

$$\ddot{x} = g \left(\sin \theta - \mu_s \cos \theta \right) \dots \quad \dots (7)$$

Just before the block starts to slide, the acceleration $\ddot{x} = \mathbf{0}$, So

$$sin\theta = \mu_s \cos \theta \quad \dots \dots \dots (8)$$

$$\mu_s = \frac{\sin \theta}{\cos \theta} = \tan \theta \quad \blacksquare \quad \theta = \tan^{-1} \mu_s$$